Chem. Ber. 100, 2812-2821 (1967)

Walter Strohmeier und Franz-Josef Müller

Klassifizierung phosphorhaltiger Liganden in Metallcarbonyl-Derivaten nach der π-Acceptorstärke

Aus dem Institut für Physikalische Chemie der Universität Würzburg

(Eingegangen am 25. März 1967)

Photochemisch wurden eine Reihe von monosubstituierten Metallcarbonylen mit phosphorhaltigen Liganden hergestellt und aus der Änderung der Valenzschwingungsbande $v_{C=0}$ die relative π -Acceptorstärke am Phosphoratom der Liganden bestimmt. Sie ist unabhängig vom jeweiligen Metallatom des Metallcarbonyls und kann klassifiziert werden, wobei typische Verbindungen als Vertreter der Klassen gewählt wurden. -- Die π -Acceptorstärke nimmt zu in der Reihe:

Der Einfluß der Substituenten am Phosphor auf dessen π -Acceptorstärke wird diskutiert. Die gefundenen Gesetzmäßigkeiten ermöglichen die Voraussage der ungefähren π -Acceptorstärke am Phosphor von noch nicht bekannten phosphorhaltigen Verbindungen vom Typ $PX_{3-n}R_n$ (X = Halogen oder OR; R = Alkyl oder Aryl).

Nickelcarbonyl, dessen CO-Gruppen teilweise oder ganz durch Phosphine PR₃, Phosphite P(OR)₃ oder Phosphorhalogenide $PX_{3-n}R^n$ ersetzt sind, ist ein geeigneter Katalysator zur Cyclisierung von Acetylenen¹). Die Reaktivität spezieller Katalysatoren vom Typ Ni($PX_{3-n}R_n$)₄ hängt vom Phosphorhalogenid $PX_{3-n}R_n$ ab und kann der Änderung der π -Acceptorstärke am Phosphoratom durch die Substituenten X bzw. R zugeschrieben werden²). Butadien kann mit Nickelphosphiten Ni[P(OR)₃]₃ bzw. Ni[P(OR)₃]₂ zu Cyclooctadien-(1.5) cyclisiert werden³). Ein weiterer sehr wirkungsvoller Katalysator für die Cyclisierung von Butadien ist der Nickel-Olefinkomplex Ni···C₁₂H₁₈. In Gegenwart von Phosphinen als Donatoren läuft die Cyclisierung selektiv in Bezug auf die Cyclooctadien-Bildung ab und die Reaktionsgeschwindigkeit hängt von der π -Acceptorstärke am Phosphor und von sterischen Einflüssen (möglicherweise verschiedene Bindungswinkel am Phosphor) ab⁴). Um den

Einfluß dieser beiden Effekte getrennt diskutieren zu können, muß die relative Abstufung der π -Acceptorstärke am Phosphor als Funktion der Liganden bekannt sein. Für gewisse typische Phosphine, Phosphite und Phosphorhalogenide konnte bereits

¹⁾ W. Reppe und W. J. Schweckendieck, Liebigs Ann. Chem. 560, 104 (1948).

²⁾ J. R. Leto und M. F. Leto, J. Amer. chem. Soc. 83, 2944 (1961).

³⁾ Badische Anilin- & Soda-Fabrik AG, Ludwigshafen (Erf. N. v. Kutepow, H. Seibt und F. Meier), DAS 1144268 (1963), C. A. 60, 9198h (1964).

⁴⁾ G. Wilke, Angew. Chem. 75, 10 (1963).

en 2813

eine "spektroskopische Reihe" für die π -Acceptorstärke durch Vergleich der Änderung der CO-Frequenz in mit PR₃ substituiertem Co(CO)₃NO gewonnen werden⁵⁾.

Wir konnten nun an den monosubstituierten Cyclopentadienylmangantricarbonylen $C_5H_5Mn(CO)_2D$ (D = P-haltiger Ligand) durch Vergleich mit Ni(CO)_3D zeigen⁶⁾, daß die relative π -Acceptorstärke am Phosphor gegenüber dem Zentralatom Ni und Mn in Ni(CO)_3D und $C_5H_5Mn(CO)_2D$ identisch ist. Es sollte untersucht werden, ob dies auch für andere Metallcarbonyle zutrifft, da dann die Möglichkeit besteht, die relative π -Acceptorstärke am Phosphor in phosphorhaltigen Verbindungen generell zu klassifizieren, wie dies bereits für die π -Donatorstärke am Zentralatom der Metallcarbonyle durchgeführt werden konnte⁷).

Wir haben daher eine Reihe von mit phosphorhaltigen Liganden monosubstituierten Metallcarbonylen photochemisch hergestellt, die Lage der höchsten C=O-Valenzschwingung ($v_{C=0}$) bestimmt und tabellarisch nach steigenden Wellenzahlen angeordnet. Die Ergebnisse sind in Tab. 1 einschließlich der schon von anderen Autoren mitgeteilten $v_{C=0}$ -Werte enthalten.

A. Klassifizierung der π -Acceptorstärke

Wie Tab. 1 zeigt, nimmt die π -Acceptorstärke mit zunehmend negativeren Substituenten am Phosphor zu. Da für die Diskussion der Metall-Ligandenbindung $Me \Rightarrow D$ in $Me(CO)_{x-1}D$ bzw. $ArMe(CO)_{x-1}D$ (Ar = Aromat bzw. Cyclopentadienyl) außer der σ -Bindung Me – D die relative π -Acceptorstärke am Liganden und die relative π -Donatorstärke am Metall maßgebend ist, wurde in Analogie zur Klassifizierung der π -Donatorstärke am Metall⁷) auch für die π -Acceptorstärke am Liganden eine Einteilung in 6 Klassen gewählt und als typische Vertreter der Klassen die Verbindungen PR3, P(C6H5)3, PCl(C6H5)2, PCl2C6H5, PCl3, PF3 genommen. Da weiterhin nach unserer bisherigen Erfahrung Cyclopentadienylmangantricarbonyl photochemisch mit allen n-Donatoren unter Bildung der monosubstituierten Verbindungen $C_5H_5Mn(CO)_2D$ reagiert, wurde die Lage der Valenzschwingung $v_{C=0}$ in diesen Verbindungen zur Einteilung in die betreffende Klasse gewählt (Tab. 1, Spalte 3). Wegen des kontinuierlichen Überganges von einer Klasse zur anderen erscheint die getroffene Einteilung vielleicht etwas willkürlich, jedoch zeigt Tab. 1, daß es sinnvoll ist, z. B. die Trialkylphosphite in die Klasse II ($P(C_6H_5)_3$) und die Triarylphosphite in die Klasse III ($PCl(C_6H_5)_2$) einzuordnen, während Tris-[β -chlor-äthyl]-phosphit (Tab. 1, Nr. 17) den Übergang zwischen diesen Klassen bildet.

Für eine in Tab. 1 nicht enthaltene Phosphorverbindung kann sofort ihre Einstufung erhalten werden, wenn diese photochemisch mit $C_5H_5Mn(CO)_3$ umgesetzt und die Lage von $\nu_{C=O}$ bestimmt wird, wobei die Isolierung der Verbindung $C_5H_5Mn(CO)_2D$ nicht notwendig ist (s. experimenteller Teil).

Als wichtigstes Ergebnis dieser Untersuchungen erscheint uns der Befund, daß die relative π -Acceptorstärke am Phosphor und ihre Klassifizierung unabhängig von der

⁵⁾ W. D. Horrocks und R. Craig Taylor, J. Inorg. Chem. 2, 723 (1963).

⁶⁾ W. Strohmeier und F. J. Müller, Z. Naturforsch. 22b, 451 (1967).

⁷⁾ W. Strohmeier, J. F. Guttenberger und F. J. Müller, Z. Naturforsch. 22b (1967), im Druck.

1	2	3	4	5	6	7	8	9
		$v_{C=0}$ in			<u>کر</u> – 0	(cm ⁻¹) in	Me(CO) _{v~1} D	bzw.
Klasse	Тур	C ₅ H ₅ Mn- (CO) ₂ D	Ligand D	Nr.	C ₅ H ₅ Mn- (CO) ₂ D ⁶⁾	C ₅ H ₅ V- (CO) ₃ D	Fe(CO) ₄ D	Ni(CO) ₃ D
			Piperidin	1	1927		2050	
			$P(C_6H_{11})_3$	2	1926	1946	2045	2060
			$P(i-C_3H_7)_3$	3	1928	1948		2062
		1925	$P(sekC_4H_9)_3$	4	1930	1949		2064
3	PR ₃	bis	$P(C_4H_9)_3$	5	1930	1950	2045	2064
		1935	$P(C_4H_9)_2C_6H_5$	6	1930	1951		2066
			$P(C_2H_5)_3$	7	1931	1949	2047	2066
			P(CH ₃) ₃	8	1931	1 9 51	2049	2066
			$P(CH_2C_6H_5)_3$	9	1931	1953	2050	2068
			P(C4H9)(C6H5)2	10	1934	1954		2069
			P(p-tolyl)3	11	1936	1956		
		1936	P(o-tolyl) ₃	12	1937	1958		
11	$P(C_6H_5)_3$	bis	$P(C_6H_5)_3$	13	1940	1957	2062	2070
		1950	$P(OC_2H_5)_3$	14	1945	1964		2077
			$P(OC_4H_9)_3$	15	1945	1965		2078
			P(OCH ₃) ₃	16	1949	1967		2080
			P(OCH ₂ CH ₂ Cl) ₃	17	1952	1971		2086
			$PCl(C_6H_5)_2$	18	1956			2081
		1951	$P(OC_6H_4 - CH_3 - (p))_3$	19	1963	1972		2083
ш	$PCl(C_6H_5)_2$	bis	$P(OC_6H_4 - CH_3 - (o))_3$	20	1965	1975	2065	2085
		1970	$P(OC_6H_5)_3$	21	1965	1975	2065	2087
			$P(OC_6H_4 - C_6H_5 - (o))_3$	22	1965	1975		2086
			PCI(OC ₄ H ₉) ₂	23				2089
		1971	PCl ₂ C ₆ H ₅	24	1972	1982		2092
IV	PCl₂C ₆ H ₅	bis 1985	PCl ₂ (OC ₄ H ₉)	25				2097
		1986	PCl3	26	1992			2103
v	PCl ₃	bis 1995	P(CF ₃) ₃	27				2107
		1996	PF ₃	28	1996		2101	2110
٧ſ	PF ₃	bis 2025	CO	29	2023	2026	2114	2128

1 ab. 1. Relative π -Acceptorstarke phosphol	orhaltiger
--	------------

^{a)} (CH₃CO₂)₂C₆H₄ = Terephthalsäure-dimethylester. ^{b)} (CH₃)₃C₆H₃ = Mesitylen.

jeweiligen π -Donatorstärke am Metall ist und für alle in Tab. 1 aufgeführten Metallcarbonyle Me(CO)_x und ArMe(CO)_x gilt. In Analogie dazu wurde andererseits auch die relative π -Donatorstärke am Metall der Metallcarbonyle als unabhängig vom Typ des n-Donators gefunden⁷).

B. Substitution am Phosphor und π -Acceptorstärke

Es ist bekannt, daß negative Substituenten am Phosphor die π -Acceptorstärke stark erhöhen. Uns interessierte jedoch die Frage, ob auch feinere Substituenteneinflüsse sich auf die π -Acceptorstärke bemerkbar machen bzw. wo ihre spektroskopische Nachweisbarkeitsgrenze durch Änderung von $v_{C=0}$ in z. B. $C_5H_5Mn(CO)_2D$ liegt.

Für die Alkylphosphine PR₃ zeigt die Tab. 1 eine deutliche Zunahme von $v_{C=O}$ und somit der π -Acceptorstärke am Phosphor beim Übergang von R = Cyclohexyl (Nr. 2) zu R = CH₃ (Nr. 8), während der Einfluß von R = C₄H₉, C₂H₅ und CH₃ in den Verbindungen C₅H₅Mn(CO)₂PR₃ (Spalte 6) spektroskopisch nicht gefunden wird und in den Verbindungen Fe(CO)₄PR₃ (Spalte 8) an der Grenze der Nachweisbarkeit liegt (Genauigkeit von $v_{C=O} = \pm 2/cm$; siehe experimenteller Teil). Das gleiche gilt für den Einfluß von R = CH₃ und CH₂C₆H₅ (Nr. 8 u. 9) sowie von R = C₂H₅, C₄H₉ und CH₃ in P(OR)₃ (Nr. 14, 15 u. 16). Weiterhin wird der Einfluß

10	11	12	13	14	15	16	17
$ArMe(CO)_{x-1}D$							
(CH ₃ CO ₂) ₂ C ₆ H ₄ - Cr(CO) ₂ D ^{a)}	C6H6Cr- (CO)2D	(CH ₃) ₃ C ₆ H ₃ - Сг(CO) ₂ Db)	(CH3)6C6- Cr(CO)2D	Cr(CO) ₅ D	W(CO) ₅ D	Mo(CO)5D	Co(CO)2- (NO)D
1925	1802	1874	1855	2067	2070	2072	
1917	1888	1871	1857	2057	2065	2072	202711)
1919				2059			
1920				2060			
1921	1893	1876	1862	206210)	2067		203211)
1921	1005	1070	1861	2061	20675)	2060	203211)
1922	1895	1880	1001	206057	20075	2009	2032117
1725		1880	1863	2063	2071-	2071	
1925		1000	1000				
					2070		
1930	1901	1886	1873	2071	2071	2073	203811>
1934		1891	1875	2071			
1936		1892		2071			205011)
1937		1894		2072			2050117
1937		1897		2076			
1940		1010		2072	2078		205511)
1940		1010	1907	2075		2092	
1944		1910	1697	2076		2083	206111)
1951		1911		2070		2005	2001
1957		1921		2079	2085		
1975		1943		2087		20958)	
				2083	2101		
1996	1976	1964	1952	2110	2117	2120	211011)

Liganden in monosubstituierten Metallcarbonylen

einer *ortho*-Substitution am Benzolring im Triarylphosphit (Nr. 20, 21 u. 22) auf die π -Acceptoreigenschaft des Phosphors spektroskopisch beim Vergleich der $v_{C=0}$ -Werte nicht gefunden, während der Einfluß von *ortho*- und *para*-Substitution an der Grenze der Nachweisbarkeit liegt (Nr. 11 u. 12 sowie Nr. 19 u. 20). Bei Substitution des endständigen Wasserstoffes im Trialkylphosphit durch das stark negative Chlor tritt jedoch eine deutliche Erhöhung der π -Acceptorstärke am Phosphor auf (Nr. 14 u. 17).

Die bisherigen Ergebnisse geben somit den Hinweis, daß Substitution eines Wasserstoffes in $P(CH_3)_3$ bzw. $P(OCH_3)_3$ durch eine Alkyl- oder Arylgruppe die π -Acceptorstärke am Phosphor nur sehr geringfügig ändert, während eine deutliche Erhöhung beobachtet wird, wenn der Wasserstoff durch das stark negative Chlor ersetzt wird.

Mit Hilfe von Tab. 1 kann man andererseits auch ungefähr voraussagen, wie groß die π -Acceptorstärke am Phosphor für eine noch nicht hergestellte phosphorhaltige Verbindung sein wird, und man kann sich dann gezielt einen phosphorhaltigen Liganden bestimmter π -Acceptorstärke nach bekannten präparativen Verfahren her-

⁸⁾ R. Poiblanc und M. Bigorgne, Bull. Soc. chim. France 433, 1301 (1962).

⁹⁾ F. A. Cotton, J. inorg. Chem. 3, 702 (1964).

¹⁰⁾ T. A. Magee, C. N. Matthews, T. S. Wang und J. H. Wotiz, J. Amer. chem. Soc. 83, 3200 (1961).

¹¹⁾ E. M. Thorsteinson und F. Basolo, J. Amer. chem. Soc. 88, 3929 (1966); Lösungsmittel: Toluol.

stellen. Dies kann von Bedeutung sein für die Untersuchung der Frage, inwieweit die katalytische Aktivität am Metallatom von Komplexverbindungen, welche phosphorhaltige Liganden besitzen, von der π -Acceptorstärke am funktionellen Atom des Liganden abhängt, der ja seinerseits sehr spezifisch die Elektronenverteilung am Metall beeinflußt und auf ein bestimmtes Energieniveau einreguliert.

Bezüglich der relativen π -Acceptorstärke von PF₃ und CO selbst wurde zunächst PF₃ als schwächerer π -Acceptor eingestuft¹²). In einer kürzlich erschienenen Arbeit wurde diese Einstufung umgekehrt mit der Bemerkung, daß PF₃ hinsichtlich seines π -Acceptorvermögens allen herkömmlichen Liganden klar überlegen ist¹³). Es ist jedoch zu bedenken, daß sich die in der zitierten Arbeit gemachte Schlußfolgerung auf Metallcarbonyle bezieht, deren *sämtliche* CO-Gruppen durch PF₃ substituiert sind. Aus der vorliegenden Tab. 1 geht eindeutig hervor, daß in den monosubstituierten Metallcarbonylen der Ligand PF₃ ein schwächerer π -Acceptor als CO ist (Nr. 28 u. 29). Nur mit dem Liganden SO₂ ist $\nu_{C=0}$ in C₅H₅Mn(CO)₂SO₂¹⁴), C₆H₆Cr(CO)₂SO₂¹⁵) und (CH₃)₆C₆Cr(CO)₂SO₂¹⁵) innerhalb $\pm 2/cm$ identisch mit $\nu_{C=0}$ der entsprechenden unsubstituierten Verbindung, so daß von allen bisher untersuchten Liganden nur SO₂ die gleiche Acceptorstärke hat wie die CO-Gruppe.

Einer besonderen Erwähnung bedarf die sogenannte π -Acceptorstärke des Phosphors in den Phosphinen (Klasse I). Ein Vergleich der Piperidin- (Nr. 1) und Tricyclohexylphosphin-Derivate (Nr. 2) zeigt, daß in den letztgenannten Verbindungen $v_{C=0}$ tiefer liegt als in den Piperidin-Derivaten. Wegen der Abwesenheit leerer, energetisch tiefliegender π -Orbitale am Stickstoff muß die π -Acceptorstärke am Stickstoff der aliphatischen Amine Null sein⁹⁾. Das Tieferliegen der $v_{C=0}$ -Werte der P(C₆H₁₁)₃-Derivate bedeutet aber, daß die π -Acceptorstärke am Phosphor "kleiner" als Null sein muß und somit der Phosphor in P(C₆H₁₁)₃ ein π -Donator ist, in Analogie zum Dimethylformamid⁹, welches ebenfalls ein schwacher π -Donator sein muß. Nur in $(CH_3)_6C_6Cr(CO)_2P(C_6H_{11})_3$ ist $v_{C=O}$ etwas größer als in der Piperidin-Verbindung. Nun hat aber Chrom in $(CH_3)_6C_6Cr(CO)_3$, das zur Klasse VI in Bezug auf die π -Donatorstärke am Zentralatom gehört⁷), von allen in Tab. 1 aufgeführten Metallcarbonylen die höchste Elektronendichte am Metall, so daß der Phosphor in $P(C_6H_{11})_3$ nicht mehr als π -Donator fungieren kann und auch in den Verbindungen $(CH_3)_6C_6Cr(CO)_2D$ mit $D = P(C_4H_9)_3$, $P(C_2H_5)_3$, $P(CH_3)_3$ und $P(CH_2C_6H_5)_3$ (Tab. 1, Spalte 13) als π -Acceptor wirkt.

Wird die Elektronendichte am Metall wie z. B. in C₆H₆Cr(CO)₃ geringer (Metallcarbonyl der Klasse IV⁷), so kann erst der Phosphor in P(C₂H₅)₃ als π -Acceptor wirken (Tab. 1, Spalte 11), während in Fe(CO)₅ (Metallcarbonyl der Klasse I⁷) die Elektronendichte am Metall noch geringer ist, so daß auch der Phosphor in P(CH₂C₆H₅)₃ noch keine π -Acceptoreigenschaften gegenüber dem Zentralatom Eisen hat (Tab. 1, Spalte 8: $v_{C=O}$ Piperidin- $\equiv v_{C=O}$ P(CH₂C₆H₅)₃-Derivat). Das gleiche gilt für die Metallcarbonyle der Klasse II (Tab. 1, Spalte 14, 15 u. 16).

¹²⁾ S. z. B. l. c.⁵⁾.

¹³⁾ Th. Kruck, Angew. Chem. 79, 43 (1967).

¹⁴⁾ W. Strohmeier und J. F. Guttenberger, Chem. Ber. 97, 1871 (1964).

¹⁵⁾ W. Strohmeier, G. Popp und J. F. Guttenberger, Chem. Ber. 99, 165 (1966).

Diese experimentellen Befunde zeigen, daß bei den Phosphinen der Klasse I die Fähigkeit des Phosphors, als schwacher π -Acceptor gegenüber dem Zentralatom des Metallcarbonyls zu fungieren, von der π -Donatorstärke am Zentralatom abhängt.

Gegenüber Metallcarbonylen der Klassen I–III sind Phosphine schwache oder keine π -Donatoren, gegenüber Metallcarbonylen der Klassen IV und V können sie schwache π -Donatoren oder π -Acceptoren sein, und gegenüber Metallcarbonylen der Klasse VI sind sie schwache π -Acceptoren. Die Phosphorverbindungen der Klassen II–VI sind jedoch immer π -Acceptoren gegenüber dem Zentralatom des Metallcarbonyls.

Dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für die finanzielle Unterstützung dieser Arbeit.

Beschreibung der Versuche

Die IR-Spektren wurden mit dem Spektralphotometer Perkin-Elmer 337 unter 4-facher Spreizung der Abszisse aufgenommen. Die Genauigkeit der Wellenzahlangabe ist \pm 2/cm. Sämtliche Spektren wurden in CS₂ als Lösungsmittel aufgenommen.

Allgemeine Vorschrift zur Herstellung von Monosubstitutionsprodukten des Cyclopentadienylvanadintetracarbonyls und Cyclopentadienylmangantricarbonyls

I. Isolierte, analysenreine Substanzen

Sämtliche Monosubstitutionsprodukte der beiden Ausgangscarbonyle wurden photochemisch durch Bestrahlen einer Lösung des Metallcarbonyls und Donators in der schon früher beschriebenen Apparatur¹⁶) hergestellt.

Für Cyclopentadienylvanadintetracarbonyl diente gewöhnlich Benzol als Lösungsmittel. Auch Heptan, Dioxan, Tetrahydrofuran (THF), Isopropyläther und Äther können ohne beobachtbaren Einfluß auf die Ausbeute an Monosubstitutionsprodukt als Lösungsmittel eingesetzt werden.

Cyclopentadienylmangantricarbonyl und der Donator wurden generell in Benzol bestrahlt. Man kann auch den Cyclopentadienylmangandicarbonyl-THF-Komplex durch Bestrahlen von Cyclopentadienylmangantricarbonyl in THF herstellen und nachfolgend durch Zugabe des Donators zum gelösten THF-Komplex und Erhitzen unter Donatorenaustausch das gewünschte Produkt erhalten. Dabei tritt gewöhnlich eine Farbänderung der Lösung von Rot nach Gelb ein.

Die Aufarbeitung der bestrahlten Reaktionslösung richtet sich danach, ob man ein festes oder flüssiges Endprodukt zu erwarten hat.

Methode 1: Festes Endprodukt (Tab. 2): Das Ausgangscarbonyl (1 mMol) und der Donator (1 mMol) wurden in 25 ccm Lösungsmittel unter Durchleiten von gereinigtem Stickstoff 3 bis 4 Stdn. bestrahlt. Nach Abziehen des Lösungsmittels bei $40-60^{\circ}/15$ Torr im Rotationsverdampfer extrahierte man den festen oder schmierigen Rückstand zweimal mit 15 ccm heißem Benzol, filtrierte die Extrakte und befreite die vereinigten Filtrate im Rotationsverdampfer vom Lösungsmittel. Das nicht umgesetzte Metallcarbonyl wurde durch Sublimation i. Hochvak. bei $60-80^{\circ}$ entfernt. Man löste dann den Sublimationsrückstand unter Erwärmen in einem Überschuß des in Tab. 2 unter "Umkristallisiert aus" an erster Stelle genannten Lö-

¹⁶⁾ W. Strohmeier und Kl. Gerlach, Chem. Ber. 94, 398 (1961).

Ŋr.	Cyclopentadienyl-	Ausb. %	Umkristal- lisiert aus*)	Schmp. Farbe	Summenformel (MolGew.)	1	C	Analysen H	ъ	Metall
1	-vanadin-tricarbonyl- tricyclohexylphosphin	54	Heptan Äthanol	190° rot	C ₂₆ H ₃₈ O ₃ PV (480.5)	Ber. Gef.	64.99 64.90	7.97 7.69	6.45 6.44	10.60 10.23
7	-vanadin-tricarbonyl- trimethylphosphin	64	Petroläther Äthanol	136° gelb	C ₁₁ H ₁₄ O ₃ PV (276.2)	Ber. Gef.	47.84 48.30	5.11 5.12	11.22 10.94	18.45 18.62
e	-vanadin-tricarbonyl- triäthylphosphin	83	Petroläther Äthanol	116° orangegelb	C ₁₄ H ₂₀ O ₃ PV (318.2)	Ber. Gef.	52.84 53.54	6.33 6.33	9.73 9.70	16.01 15.80
4	-vanadin-tricarbonyl- triisopropylphosphin	73	subl. bei 70° i. Hochvak,	141° hellrot	C ₁₇ H ₂₆ O ₃ PV (360.3)	Ber. Gef.	56.67 56.95	7.27 6.90	8.60 8.42	14.14 13.90
S	-va n adin-tricarbonyl- tributylphosphin	74	Petroläther Äthanol	90° ockergelb	C ₂₀ H ₃₂ O ₃ PV (402.4)	Ber. Gef.	59.69 60.08	8.02 7.98	7.70 7.92	12.66 12.83
9	-vanadin-tricarbonyl- trib e nzylphosphin	80	Äthanol Heptan	175° gelb	C ₂₉ H ₂₆ O ₃ PV (504.5)	Ber. Gef.	69.05 69.13	5.19 5.18	6.14 6.10	10.10 9.73
٢	-vanadin-tricarbonyl- triphenylphosphin	87	Heptan Äthanol	180° braunrot	C ₂₆ H ₂₀ O ₃ PV (462.4)	Ber. Gef.	67.54 67.69	4.36 4.13	6.70 6.10	11.02 10.93
80	-vanadin-tricarbonyl- tri- <i>p</i> -tolylphosphin	85	Heptan	186° rotgelb	C ₂₉ H ₂₆ O ₃ PV (504.5)	Ber. Gef.	69.05 68.63	5.20 5.19	6.14 6.33	10.10 10.22
6	-vanadin-tricarbonyl- triphenylphosphit	26	Heptan Äthanol	114° ockergelb	C ₂₆ H ₂₀ O ₆ PV (510.4)	Ber. Gef.	61.19 61.09	3.95 4.28	6.07 6.05	9.98 10.10
10	-vanadin-tricarbonyl- tri-o-tolylphosphit	56	Heptan	162° orangegelb	C ₂₉ H ₂₆ O ₆ PV (504.5)	Ber. Gef.	63.05 63.44	4.74 4.63	5.61 5.49	9.22 9.30
11	-vanadin-tricarbonyl- tri-o-biphenylylphosphit	27	Heptan	164° ockergelb	C44H32O6PV (738.7)	Ber. Gef.	71.55 70.95	4.37 4.25	4.19 4.00	6.89 6.60
12	-mangan-dicarbonyl- tricyclohexylphosphin	57	Heptan Methanol	190° hellgelb	C ₂₅ H ₃₈ MnO ₂ P (456.5)	Ber. Gef.	65.78 65.18	8.39 8.11	6.79 6.97	12.03 12.26
13	-mangan-dicarbonyl- triisopropylphosphin	66	subl. bei 70° i. Hochvak.	181° goldgelb	C ₁₆ H ₂₆ MnO ₂ P (336.3)	Ber. Gef.	57.15 57.00	7.79	9.21 9.23	16.34 16.20
14	-mangan-dicarbonyl- tribenzylphosphin	90	Heptan Äthanol	160° hellgelb	C ₂₈ H ₂₆ MnO ₂ P (480.4)	Ber. Gef.	70.00 70.10	5.46 5.26	6.45 6.82	11.44 11.10
15	-mangan-dicarbonyl- tri-p-tolylphosphin	75	Heptan Äthanol	158° hellgelb	C ₂₈ H ₂₆ MnO ₂ P (480.4)	Ber. Gef.	70.00 70.31	5.46 5.23	6.45 6.59	11.44 11.50
16	-mangan-dicarbonyl- triphenylphosphit	39	Petroläther Heptan	113° hellgelb	C ₂₅ H ₂₀ MnO5P (486.4)	Ber. Gef.	61.74 62.06	4.15 4.23	6.37 6.79	11.30
17	-mangan-dicarbonyl- tri-o-tolylphosphit	67	Heptan Methanol	144° heilgelb	C ₂₈ H ₂₆ MnO ₅ P (528.4)	Ber. Gef.	63.64 63.92	4.96 4.67	5.86 5.95	10.40 10.10
18	-mangan-dicarbonyl- tri-o-biphenylylphosphit	28	Heptan Äthanol	165° blaßgelb	C ₄₃ H ₃₂ MnO ₅ P (714.7)	Ber. Gef.	72.27 72.67	4.51 4.33	4.33 4.20	7.69 7.50
*) Nachei	inander aus den beiden Lösungsn	aitteln (s. unte	cr I, Methode 1).							

Tab. 2. Nach Methode 1 hergestellte Verbindungen

Ľ.	Cyclopentadienyl-	Ausb. %	Sdp. (Torr)	Farbe	Summenformel (MolGew.)		υ	Analysen H	هر	Metall
19	-vanadin-tricarbonyl- trimethylphosphit	35	\sim 122° (0.001)	rubinrot Öl	C ₁₁ H ₁₄ O ₆ PV (324.2)	Ber. Gef.	40.76 41.01	4.35 4.23	9.56 9.93	15.72 15.58
20	-vanadin-tricarbonyl- triäthylphosphit	63	∼110° (0.001)	dunkelrot Öl	C14H2006PV (366.2)	Ber. Gef.	45.92 46.60	5.50 5.53	8.46 8.46	13.91 13.70
21	-vanadin-tricarbonyl- tributylphosphit	63	237° * (743), Zers.	dunkelrot Öl	C ₂₀ H ₃₂ O ₆ PV (450.4)	Ber. Gef.	53.34 52.90	7.16	6.95	11.31
52	-vanadin-tricarbonyl- [tris-(3-chlor-äthyl)-phosphit]	25	~128° (0.001)	rotorange Öl	C ₁₄ H ₁₇ Cl ₃ O ₆ PV (469,6) ^{a)}	Ber. Gef.	35.81 35.95	3.95	6,60 6,83	10.85
23	-mangan-dicarbonyl- trimethylphosphin	59	$\sim 120^{\circ}$ (0.001) Schmp. 61 - 62°	heligelb fest	C ₁₀ H ₁₄ MnO ₂ P (252.1)	Ber. Gef.	47.64 47.69	5.54	12.28	21.79 21.83
24	-mangan-dicarbonyl- triäthylphosphin	44	$\sim 154^{\circ}$ (0.001)	Ōĩ	C ₁₃ H ₂₀ MnO ₂ P (294.2)	Ber. Gef.	53.07 53.33	6.85 6.86	10.53 10.74	18.67 18.80
25	-mangan-dicarbonyl- tributylphosphin	83	$\sim 177^{\circ}$ (0.001) Schmp. 38 – 39°	hellgeib fest	C ₁₉ H ₃₂ MnO ₂ P (378.4)	Ber. Gef.	60.31 60.71	8.52 8.32	8.19 8.37	14.52 14.34
26	-mangan-dicarbonyl- tri-sekbutylphosphin	11	316°* (756)	heligelb Öi	C ₁₉ H ₃₂ MnO ₂ P (378.4)	Ber. Gef.	60.31 60.21	8.52 8.04	8.19 8.31	14.52 14.40
27	-mangan-dicarbonyl- [dibutyl-phenyl-phosphin]	66	295° * (755)	orangerot Öl	C ₂₁ H ₂₈ MnO ₂ P (398.4)	Ber. Gef.	63.32 63.24	7.08 7.03	7.78 7.60	13.79 13.90
28	-mangan-dicarbonyl- trimethylphosphit	67	∼110° (0.01)	heilgeib Öl	C ₁₀ H ₁₄ MnO ₅ P (300.1)	Ber. Gef.	40.02 39.73	4.70 5.04	10.32 10.85	18.30 18.10
53	-mangan-dicarbonyl- triäthylphosphit	89	~113° (0.01)	hellgelb Öl	C ₁₃ H ₂₀ MnO ₅ P (342.2)	Ber. Gef.	45.63 45.97	5.89 5.89	9.05 8.92	16.05 15.82
30	-mangan-dicarbonyl- tributylphosphit	68	250° * (756) Zers.	hellgelb Öl	C ₁₉ H ₃₂ MnO ₅ P (426.4)	Ber. Gef.	53.52 54.61	7.57 7.86	7.26 7.94	12.88 13.00
31	-mangan-dicarbonyl- [tris-(3-chlor-äthyl)-phosphit]	36	254° • (752) Zers.	hellgeib Öl	C ₁₃ H ₁₇ Cl ₃ MnO ₅ P (445.6) ^{b)}	Ber. Gef.	35.04 35.09	3.84 3.92	6.95 7.05	12.33 12.43
32	-mangan-dicarbony]- [dichlor-phenyl-phosphin]	60	Schmp. 126°*	heilgelb fest	C ₁₃ H ₁₀ Cl ₂ MnO ₂ P (355.0) e	Ber. Gef.	43.98 43.03	2.84 2.95	8.72 8.96	15.47
^{a)} Ber. Cl b) Ber. Cl c) Ber. Cl	22.65 Gef. Cl 22.85 23.87 Gef. Cl 24.00 19.97 Gef. Cl 20.10									

Tab. 3. Nach Methode 2 hergestellte Verbindungen

sungsmittels, filtrierte die Lösung heiß, engte bei 40° im Rotationsverdampfer bis zur beginnenden Kristallisation ein und ließ bei 0° auskristallisieren. Für eine zweite Umkristallisation stellte man eine heißgesättigte Lösung der Verbindung in dem in Tab. 2 an zweiter Stelle genannten Lösungsmittel her und ließ bei 0° auskristallisieren. Die Kristalle wurden auf einer Nutsche gesammelt und i. Vak. bei Raumtemp. von anhaftendem Lösungsmittel befreit.

Methode 2: Flüssiges Endprodukt (Tab. 3): Der bestrahlte Ansatz wurde bei $40-60^{\circ}/15$ Torr im Rotationsverdampfer vom Lösungsmittel befreit, das nicht umgesetzte Metallcarbonyl bei $60-80^{\circ}$ i. Hochvak. entfernt, das zurückbleibende Öl in eine Mikrodestillationsapparatur überführt und bei 10^{-3} Torr destilliert, wobei die Vorlage auf 80° gehalten wurde. Statt einer Mikrodestillationsapparatur wurde auch mit Erfolg ein Sublimationsgefäß mit spitz zulaufendem Sublimationsfinger, unter dessen Spitze unmittelbar ein kleines Auffanggefäß gehängt wurde, verwendet. Der Finger wurde mit Hilfe eines Thermostaten auf 80° aufgeheizt, so daß sich im Auffanggefäß nur höhersiedende Fraktionen sammeln konnten. Die Badtemperatur betrug bei dieser Methode $100-180^{\circ}$. Die so erhaltenen Substanzen sind in Tab. 3 mit einem * hinter dem Siedepunkt gekennzeichnet. Die Verbindungen Nr. 23, 25 und 32 sind zwar kristallin, werden aber zweckmäßiger mit der Methode der Destillation gereinigt.

Sämtliche Arbeiten wurden unter Inertgasschutz (N_2) durchgeführt. Die eingesetzten Lösungsmittel wurden in Umlaufapparaturen durch Destillation über Kalium-Natrium-Legierung oder Lithiumaluminiumhydrid von Wasser befreit. Die Schmelzpunkte bestimmte man auf einer Heizbank nach Kofler, die Siedepunkte bei Normaldruck mit Hilfe einer Schmelzpunktbestimmungsapparatur der Firma W. Büchi (nach Dr. Tottoli) unter Stickstoff.

Alle erhaltenen Monosubstitutionsprodukte des Cyclopentadienylvanadintetracarbonyls und -mangantricarbonyls sind unter Stickstoff unbegrenzt haltbar.

11. Monosubstitutionsprodukte, auf deren analysenreine Herstellung verzichtet wurde

Da es nicht der Zweck der vorliegenden Arbeit war, eine Vielzahl von neuen Substanzen analysenrein zu isolieren, wurden die Verbindungen Cyclopentadienyl-vanadin-tricarbonyl-tri-sek.-butylphosphin, -[di-n-butyl-phenyl-phosphin], -[n-butyl-diphenyl-phosphin], -tri-*p*-tolylphosphit und -dichlor-phenyl-phosphin in Lösung hergestellt, indem man 0.25 mMol *Cyclopentadienylvanadintetracarbonyl* mit der äquimolaren Menge der betreffenden *Phosphorverbindung* in 25 ccm Benzol 1.5 Stdn. bestrahlte, das Lösungsmittel im Rotationsverdampfer bei 40°/15 Torr abzog und bei 80° i. Hochvak. die Ausgangsverbindungen entfernte. Man löste den Rückstand in Schwefelkohlenstoff und nahm das IR-Spektrum dieser Lösung im Bereich von 2200-1700/cm auf. Die Reinheit der Verbindungen konnte sofort an der Zahl und Lage der CO-Banden geprüft werden.

Die Substanzen Cyclopentadienyl-mangan-dicarbonyl-[n-butyl-diphenyl-phosphin], -[chlordiphenyl-phosphin], -tri-p-tolylphosphit und -phosphortrichlorid wurden in ähnlicher Weise erhalten, indem durch Bestrahlung von 1.5 mMol Cyclopentadienylmangantricarbonyl in 25 ccm Tetrahydrofuran eine Lösung des Cyclopentadienylmangandicarbonyl-THF-Komplexes hergestellt wurde. Je 5 ccm dieser Lösung erhitzte man mit 0.3 mMol von Butyl-diphenylphosphin, Chlor-diphenyl-phosphin, Tri-p-tolylphosphit und Phosphortrichlorid unter Stickstoff zum Sieden. Nach erfolgtem Donatorenaustausch entfernte man das Tetrahydrofuran im Rotationsverdampfer und eventuell noch vorhandenes Cyclopentadienylmangantricarbonyl bei 60° i. Hochvak. und löste den Rückstand in CS₂.

Die Herstellung und Isolierung der Verbindungen $Fe(CO)_4D$, $ArCr(CO)_2D$ und $Me(CO)_5D$ wird im Zusammenhang mit anderen Problemstellungen demnächst mitgeteilt.

Damit alle in Tab. 1 unter Ni(CO)₃D angegebenen Werte miteinander verglichen werden können, wurden die Substanzen in Lösung nochmals hergestellt, indem 0.25 mMol der betreffenden Phosphorverbindung in 50 ccm CS₂ gelöst, dann 0.25 mMol $Ni(CO)_4$ zugegeben, 10 Min. bei Raumtemp. gerührt, anschließend das CS₂ i. Vak. entfernt und der Rückstand in CS₂ gelöst wurde. Mit den Donatoren der Klasse I erhält man auf diese einfache Weise die monosubstituierten Verbindungen, während mit den Donatoren der Klassen II bis VI in zunehmendem Maße auch die disubstituierten Produkte entstehen. Da deren IR-Banden jedoch bereits bekannt sind¹⁷), ist die Zuordnung der Banden der $Ni(CO)_3D$ -Verbindung auf Grund ihrer Lage und Intensität leicht.

¹⁷⁾ S. z. B. M. Bigorgne, J. inorg. nuclear Chem. 26, 107 (1964); Advances in the Chemistry of the Coordination Compounds, S. 202-208, The MacMillan Comp., New York 1961. [145/67]